The number of positive integral solutions of the equation $\left| {\begin{array}{*{20}{c}}{{x^3} + 1}&{{x^2}y}&{{x^2}z}\\{x{y^2}}&{{y^3} + 1}&{{y^2}z}\\{x{z^2}}&{y{z^2}}&{{z^3} + 1}\end{array}} \right|$ $= 11$ is
$0$
$3$
$6$
$12$
Let $P$ be a matrix of order $3 \times 3$ such that all the entries in $P$ are from the set $\{-1,0,1\}$. Then, the maximum possible value of the determinant of $P$ is. . . . . . .
Using the property of determinants and without expanding, prove that:
$\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|=0$
If $a, b, c$ are real then the value of determinant $\left| {\begin{array}{*{20}{c}} {{a^2} + 1}&{ab}&{ac}\\{ab}&{{b^2} + 1}&{bc}\\{ac}&{bc}&{{c^2} + 1}\end{array}}\right|$ $= 1$ if
By using properties of determinants, show that:
$\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)$
Show that $\left|\begin{array}{ccc}a & b & c \\ a+2 x & b+2 y & c+2 z \\ x & y & z\end{array}\right|=0$